首页 > 物理 > 物理百科 > 正文

凝聚态物理学

  • 日期:2009-08-26 09:11
  • 来源: 互联网
  • 浏览:
  • 字体:[ ]
凝聚态物理学是当今物理学最大也是最重要的分支学科之一。据 70年代中期的调查统计,凝聚态物理学年发表论文数居首位,占物理学论文总数的三分之一;从事凝聚态物理研究的人数也居首位,占总人数的四分之一;而从60年代末到80年代末,获诺贝尔物理奖的人数中,从事凝聚态研究的人数,超过了研究粒子物理的人数,接近总人数的一半,也居首位。凝聚态物理学得以迅猛发展,首先表现在其研究对象的开拓上。在由原来传统的三维周期性结构,向着低维甚至非周期结构的发展中,所涉及到的理论也逐渐地趋于深化与成熟,从30年代的晶体结构分析的唯象理论与固体的比热理论、金属自由电子论和铁磁性理论,发展到30年代后的能态理论、电子衍射和X射线衍射的动力学理论,以及点阵动力理论。60年代以后,在凝聚态物理学中,对称性破缺理论又占据了中心地位。以它为基础,建立了能态、元激发、缺陷及临界区域四个层次。与之相应,各种有序态的序参量、广义刚度、标度不变性、自相似结构等一系列新的概念随之诞生。
     此外,大量非线性课题相继出现,使凝聚态物理不仅在深度及广度上冲破了传统固体物理学,而且向着更深层次与更大的范围蓬勃发展。90年代所兴起的纳米物理学,又成为凝聚态物理的一个新的世界性研究热点。纳米粒子与一般尺度物体相比,在力、热、电磁和光等方面具有显著不同的特性,它们不仅成为未来新材料研究的基础,而且也为人类在认识客观世界上展开了一个新的层次,与此相应兴起了介观物理学的研究。当今凝聚态物理学已成为物理学最活跃的前沿领域,它不仅突破了传统固体物理学,使研究对象日益多样化和复杂化,又由于许多有价值的发现出现在相互交叉的学科领域,它又对促进交叉学科的发展,显现出强大的活力。它的实验手段、理论概念与技术不断地向着化学物理、生物、地球物理、天文、地质等领域渗透,从DNA晶体结构到地球板块驱动力的研究,从量子电子器件的机理到新材料的研制,无一不与凝聚态物理学有关。凝聚态物理在物理学乃至整个自然科学中,正在显示出日益强大的影响力。

    关于我们 广告合作 版权声明意见建议 RSS订阅 TAG标签网站地图

    COPYRIGHT 2009 - 2020 自学习网

    本站部分内容摘自网络,若您的文章不愿被本站摘录,请及时通知我们。