箭头遇见学习疑难问题/又懒得问老师进入"学生社区"平台提问!IE图标收藏本站

洪加威-新的想法

  • 日期:2009-06-21 10:21
  • 来源: 互联网
  • 浏览:
  • 字体:[ ]
  • 发布者:朱回误
19世纪,印度哲学家辨喜说过:“最伟大的东西是世界上最简单的东西,它和你自己存在一样简单。”这句话告诉了人们这样一个道理:不要忽视你身旁那些看来习以为常的小事,因为这里面往往会有宝藏。《中国科学》1986年第三期刊登了《能用举例子的办法来证明几何定理吗?》等两篇文章,这是洪加威回国后的又一项重要成果。这篇题材别开生面的论文不仅对计算机证明平面几何定理的研究工作跨进了一大步,而且对多年来数学界的一个传统观念提出了新的看法。要了解这项新工作,还得从有关归纳推理问题讲起。
     打这样一个比方,假如你第一次吃苹果,发现苹果是甜的,你再吃第二个、,第三个……当你吃了一定数量的苹果之后,你会得出一个结论:“苹果吃起来有甜味”,虽然你并没有吃掉世界上所有的苹果。这种归纳式的推理本是人们常用的,是一种非常合乎逻辑的推理形式。然而,这种从特殊的事例概括出一般性知识的思想方法在数学上却站不住脚。两千多年前,古希腊数学家欧几里得写了一本划时代的伟大著作《几何原本》。
     他在书中总结了古希腊的数学成果,用公理法建立起演绎的数学体系。这部书里,欧几里得仅从5条公理、5 个公设及一些原始定义出发,演绎出几百条命题和定理,从而征服了人类的心灵。这种演绎的推理方法至今仍统治着数学界。“凡人总要死的,张三是人,因此张三是会死的。”这是一个典型的演绎推理,它的前提和结论之间的联系是必然的。在数学中,从欧几里得以来,只有经过这种把一般性知识应用到特殊场合的推理才能在证明的过程中使用。如果谁在数学里从几个特殊的例子慨括出一般性的结论,那么这种结论只能被称为猜想,不能叫做定理。因为它还尚待严格证明。像著名的哥德巴赫猜想至今也还未最后被证明出来。
     在中学的课堂上,数学老师总是这样告诫学生:“数学是一门最严格的科学,它的每条定理,都是由前面正确的结论经演绎推理而得到的,在数学里,决不允许靠举几个例子来证明问题……”如果哪个学生“胆敢”靠举几个正确的例子来证明一道几何命题,那他一定要“吃”零分,因为这是数学上的大忌。然而,从学生时代起就喜欢“异想天开”的洪加威对数学里这个司空见惯的观点却发生了疑问。一天,他和著名数学家吴文俊教授一起闲谈,讲到了这样一个平面几何问题:“我们在纸上随便画一个三角形,再连上它三边上的高,如果画得仔细就会发现三高交于一点。不妨多试几次,但每次的结果都是如此。
     于是你肯定会认为,这要不是一条定理才怪呢!因为这是一个多么直观又简单的推理过程啊!如果能按一定的方式找出几个特例来证实这个平面几何定理成立,那么不就能借助计算机来证明平面几何问题了吗?”“想法是好,但怎么把这个问题严格化呢?”吴文俊教授问道。是啊!有大胆的设想,还需要有解决问题的手段才行。计算机复杂性理论的研究工作刚告一段落,洪加威立刻又把全部精力投入这一数学的新领域。数学,以它精密而无懈可击的论证方式赢得了科学女皇的美名。它一向被人们描述为是一门抽象的、演绎的科学,纯理智的精英。然而另一方面,在数学的萌芽和发展阶段中归纳推理也立下过“汗马功劳”。
     有人研究过,原始人通常总用一只手拿一件物品,正是经过无数次的反复和归纳,最终才从“多”的概念中分出数字“一”的概念。数学史上的伟大革命——微积分的诞生也与归纳推理密切相关。牛顿等人从前人解决的大量变量问题中归纳出有价值的想法,归结出微分和反微分两个问题,完成了科学史上的一大勋业。抚今追昔,洪加威在想:“归纳和演绎两种推理,它们像一对孪生兄弟,都是人类认识自然的基本方法。可是它们为什么这样水火不容呢?归纳和演绎两者关系的问题,一定有些很深奥的东西在里面。但究竟如何突破呢?”他继续往下想着。“归纳推理的好处是简单易行,但却不严密可靠,而演绎推理是严密可靠的,但却不简单易行。能不能用演绎推理的方法来证明某种归纳推理的严密可靠性呢?”事实上,归纳推理作为科学研究方法几乎和演绎推理有同样悠久的历史。早在两千多年前,亚里士多德就把归纳—演绎方法作为认识自然的统一方法一并提出。而古老的数学分支——平面几何,恰恰是归纳推理和演绎推理历史上分道扬镳的地方,洪加威希望在此找到一个突破口。经过严密的论证,洪加威在理论上终于证实了他的想法。
     在中国数学会五十周年年会上,他的《能用计算一个实例的办法证明几何定理吗?》一文,引起了数学界同行们的极大兴趣和关注。根据这一方法,对于一个平面几何的命题只要按一个简单的公式给出一个数值特例,然后对该特例进行验算。如果这个命题对该特例在一定误差范围内正确则命题一般地精确地成立,否则不成立。于是可以用近似计算代替传统的三段式的推理。这项工作的意义和价值,将有待今后数学界、计算机科学界以及哲学界的学者们去评判。唯物辩证法是宇宙间一切事物的根本大法,在数学这门严密的学科中也毫不例外。
     洪加威以他出色的思想方法再次证实了恩格斯早年的一句名言:“归纳和演绎,正如分析和综合一样,是必然互相联系着的。不应牺牲一个而把另一个捧到天上去,应当把每一个都用到该用的地方去,而要做到这一点,就只有注意它们的相互联系、它们的相互补充。”洪加威是新中国培养起来的新一代科学家,他个人成长历程中的起落兴衰与我们整个国家民族的命运是紧密相联的。他时刻都没有忘记,在极左路线盛行、是非颠倒的年代,有多少老师、同学曾给他以鼓励和支持,又有多少热心的好同志、好领导冒着风险保护和帮助过他。在他的每一份成绩里,都蕴含着祖国人民对他的殷切希望。当有的外国科学家劝他留在国外时,他这样写道:“他们知道我的水平,但是不知道我的心。
     我生为中国人,死为中国鬼,为了祖国的荣誉,我愿奋斗终生!”现在,洪加威虽已是一个年近五旬的人,但始终保持一颗年轻人的心,他正以旺盛的精力开拓、探索人类思维奥秘的新领域。但他把更大的希望寄予下一代青年同志。他常这样讲:“我是一个乐观派,对科学的未来和人类的前途我充满信心。因为在历史的长河中,人类现在还不过是一个婴儿。它将在信息时代中改造自己,达到出神入化的地步,变成一个比现代人类高千万倍的新人类。”一位早期数学家说得好:“不是心灵中的诗人,就不可能成为数学家。”是的,洪加威多么像一个满怀豪情的诗人。他笔下的一行行符号、公式、公理,不就是美妙的诗篇吗?这是一首首赞颂科学、颂扬真理、憧憬着人类美好明天的诗!

    关于我们 广告合作 版权声明意见建议 友情链接RSS订阅 TAG标签网站地图在线帮助

    COPYRIGHT 2009 - 2013 自学习网ICP备案:湘ICP备13002298号 链接/广告QQ:287668250

    本站部分内容摘自网络,若您的文章不愿被本站摘录,请及时通知我们。